Evaluation of Type 3 Neovascularization following anti-VEGF Treatment using Optical Coherence Tomography Angiography

Jeffrey C. Liu MD1 • Matthew Nguyen BA2 • Peter L. Nesper BA1 • Manjot K. Gill MD1
1Department of Ophthalmology, Northwestern Medicine Feinberg School of Medicine, Chicago, IL
2Northwestern University Feinberg School of Medicine, Chicago, IL

OBJECTIVE
To assess the utility of optical coherence tomography angiography (OCTA) for longitudinal evaluation and management of type 3 neovascularization in age-related macular degeneration (AMD).

PURPOSE
To analyze optical coherence tomography angiography (OCTA) imaging of type 3 neovascularization in age-related macular degeneration (AMD) at baseline and serially following multiple anti-vascular endothelial growth factor (anti-VEGF) treatments.

METHODS
This case series describes three patients diagnosed with treatment naive type 3 neovascularization secondary to AMD based on clinical examination, FA, and SD-OCT.

Snellen visual acuity and OCTA imaging with quantitative analysis of the type 3 neovascular membrane were obtained at baseline and following 1-5 monthly intravitreal anti-VEGF injections.

Quantification using the built-in AngioVue Analytics software (version 2016.2.0.35) and the Flow Tool was used to measure the type 3 neovascular lesion size at baseline and post-treatment.

RESULTS
OCTA analysis of type 3 neovascularization demonstrated regression of small caliber vessels following anti-VEGF treatment. Cystoid macular edema nearly resolved and visual acuity improved in all cases.

OCTA offers a non-invasive imaging technique in assessing morphological changes and quantitative analysis of type 3 neovascular lesions following longitudinal anti-VEGF treatment.

OCTA supplements fluorescein angiography and spectral domain OCT by providing improved microvascular identification of type 3 lesions and treatment response which may help guide clinician management and patient expectations.

CONCLUSION

REFERENCES

SUPPORT
Supported in part by an unrestricted grant from Research to Prevent Blindness

FIGURE 1
Pre-treatment: Top left: Combined en face OCTA shows enhanced flow signal of vascular tufts. Top right: Cross sectional OCTA image shows a small area of flow signal from inner nuclear layer to outer plexiform layer. Bottom left: Cross sectional OCTA image shows contrast enhanced flow signal of the type 3 lesion. Bottom right: En face OCTA demonstrates enhanced flow signal from inner nuclear layer to outer plexiform layer. Post-treatment: Top and bottom right: En face and cross sectional OCTA images shows “silhouette sign” of type 3 lesion.

FIGURE 2
Pre-treatment: Top left: Combined en face OCTA shows high flow vascular complex with large caliber vessels vertically oriented. Bottom left (Cross sectional OCTA): small vessels at the base of the lesion. Top right: Combined en face OCTA shows significant reduction in small caliber vessels leaving mostly a single large caliber vessel. Bottom right: Cross-sectional OCTA scan shows flow signal of the type 3 lesion appears to pass through the RPE and outer retina. Post-treatment: Top right: Cross sectional OCTA scan shows modest reduced flow of the type 3 lesion. Bottom left: Cross sectional OCTA scan shows no identifiable vascular lesion or flow signal.

TABLE 1

<table>
<thead>
<tr>
<th>CASE</th>
<th>PRE-TREATMENT</th>
<th>POST-TREATMENT</th>
<th>DECREASE IN %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>20/40</td>
<td>20/20-3</td>
<td>8</td>
</tr>
<tr>
<td>Case 2</td>
<td>20/400</td>
<td>20/100</td>
<td>57</td>
</tr>
<tr>
<td>Case 3</td>
<td>20/150</td>
<td>undetectable</td>
<td>100</td>
</tr>
</tbody>
</table>

This case series describes three patients diagnosed with treatment naive type 3 neovascularization secondary to AMD based on clinical examination, FA, and SD-OCT.

Snellen visual acuity and OCTA imaging with quantitative analysis of the type 3 neovascular membrane were obtained at baseline and following 1-5 monthly intravitreal anti-VEGF injections.

Quantification using the built-in AngioVue Analytics software (version 2016.2.0.35) and the Flow Tool was used to measure the type 3 neovascular lesion size at baseline and post-treatment.

OCTA analysis of type 3 neovascularization demonstrated regression of small caliber vessels following anti-VEGF treatment. Cystoid macular edema nearly resolved and visual acuity improved in all cases.

OCTA offers a non-invasive imaging technique in assessing morphological changes and quantitative analysis of type 3 neovascular lesions following longitudinal anti-VEGF treatment.

OCTA supplements fluorescein angiography and spectral domain OCT by providing improved microvascular identification of type 3 lesions and treatment response which may help guide clinician management and patient expectations.

CONCLUSION

OBJECTIVE
To assess the utility of optical coherence tomography angiography (OCTA) for longitudinal evaluation and management of type 3 neovascularization in age-related macular degeneration (AMD).

PURPOSE
To analyze optical coherence tomography angiography (OCTA) imaging of type 3 neovascularization in age-related macular degeneration (AMD) at baseline and serially following multiple anti-vascular endothelial growth factor (anti-VEGF) treatments.

METHODS
This case series describes three patients diagnosed with treatment naive type 3 neovascularization secondary to AMD based on clinical examination, FA, and SD-OCT.

Snellen visual acuity and OCTA imaging with quantitative analysis of the type 3 neovascular membrane were obtained at baseline and following 1-5 monthly intravitreal anti-VEGF injections.

Quantification using the built-in AngioVue Analytics software (version 2016.2.0.35) and the Flow Tool was used to measure the type 3 neovascular lesion size at baseline and post-treatment.

RESULTS
OCTA analysis of type 3 neovascularization demonstrated regression of small caliber vessels following anti-VEGF treatment. Cystoid macular edema nearly resolved and visual acuity improved in all cases.

OCTA offers a non-invasive imaging technique in assessing morphological changes and quantitative analysis of type 3 neovascular lesions following longitudinal anti-VEGF treatment.

OCTA supplements fluorescein angiography and spectral domain OCT by providing improved microvascular identification of type 3 lesions and treatment response which may help guide clinician management and patient expectations.

CONCLUSION

REFERENCES

SUPPORT
Supported in part by an unrestricted grant from Research to Prevent Blindness
METHODS

- This case series describes three patients diagnosed with treatment naïve type 3 neovascularization secondary to age related macular degeneration (AMD) based on clinical examination, fluorescein angiography, and spectral domain OCT.

- Snellen visual acuity and optical coherence tomography angiography (OCTA) imaging with quantitative analysis of the type 3 neovascular membrane were obtained at baseline and following 1-5 monthly intravitreal anti-VEGF injections.

- Quantification using the built-in AngioVue Analytics software (version 2016.2.0.35) and the Flow Tool was used to measure the type 3 neovascular lesion sizes at baseline and post-treatment.
RESULTS

CASE 1

- **Pre-treatment.** Top left: 3x3mm *en face* OCTA shows enhanced flow signal of vascular tuft (yellow outline). Bottom left: Cross-sectional OCTA shows abnormal flow signal from inner nuclear layer to outer plexiform layer (blue arrowhead).

- **Post-treatment:** Top and bottom right: *En face* and cross-sectional OCTA scan shows modest reduced flow of the type 3 lesion.

CASE 2

- **Pre-treatment.** Top left: 3x3mm *en face* OCTA shows high flow vascular complex with large caliber vessels vertically, flanked by smaller caliber vessels on each side (yellow outline). Bottom left: Cross-sectional OCTA co-registers with the *en face* OCTA flow signal at the outer nuclear and outer plexiform layers (blue arrowhead).

- **Post-treatment:** Top right: *En face* OCTA demonstrated significant reduction in small caliber vessels leaving mainly a large caliber vascular lesion. Bottom right: Cross-sectional OCTA scan shows flow signal of the lesion appears to pass through the RPE and into the sub-RPE space.
CASE 3

RESULTS

TABLE 1. VISUAL ACUITY AND QUANTITATIVE ANALYSIS OF LESION AREA AT BASELINE AND FOLLOWING ANTI-VEGF TREATMENT

<table>
<thead>
<tr>
<th>Case</th>
<th>Pre-treatment VA and lesion area (mm²)</th>
<th>Post-treatment VA and lesion area (mm²)</th>
<th>Decrease in lesion area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20/40 0.038</td>
<td>20/20-3 0.035</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>20/400 0.099</td>
<td>20/50-2 0.042</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>20/150 0.021</td>
<td>20/60-2 0 0</td>
<td>100</td>
</tr>
</tbody>
</table>

- OCTA demonstrated resolution of cystoid macular edema in all 3 cases following anti-VEGF treatment.
- Case 1 demonstrated persistence of larger vessels even after multiple anti-VEGF treatments.
- In case 2, resolution of the edema allowed better visualization of the type 3 neovascular lesion due to intraretinal fluid obscuration at baseline.
- All cases demonstrated improved visual acuity and reduction of type 3 neovascularization area on quantitative OCTA analysis with significant reduction in 2 out of 3 cases.

- **Pre-treatment.** Top left: 3x3mm en face OCTA shows a small vascular tuft with flow (yellow outline). Bottom left: Cross-sectional OCTA co-registers a small focal area of flow with the en face OCTA identifying the lesion at the level of the deep/outer retina (blue arrowhead).

- **Post-treatment:** Top and bottom right: En face and cross-sectional OCTA shows no identifiable flow signal or vascular lesion.
CONCLUSION

- OCTA analysis of type 3 neovascularization demonstrated regression of small caliber vessels following anti-VEGF treatment.

- Visual acuity improved and cystoid macular edema nearly resolved in all cases.

- OCTA offers a non-invasive imaging technique in assessing morphological changes and quantitative analysis of type 3 neovascular lesions following longitudinal anti-VEGF treatment.

- OCTA supplements fluorescein angiography and spectral domain OCT by providing improved microvascular identification of type 3 lesions and treatment response which may help guide clinician management and patient expectations.